基于Langchain框架的Agent智能体实现之工具集成
“ 工具调用是大模型智能体的核心理念,没有工具就没有智能体的存在。”
智能体开发是大模型应用中一个重要的概念,也是大模型应用的未来;而关于智能体的开发有各种各样的概念,但核心无非有两个一个是函数调用,另一个就是工具的实现。
关于函数调用有两种方式,其一是之前的function call,其二是现在比较火的MCP协议;不管是fc还是MCP目的都是让大模型能够调用外部的工具来实现具体的功能。而今天我们主要介绍的就是基于Langchain框架来实现各种工具。

基于Langchain的工具开发
在智能体开发中,工具是一个很重要的概念,操作数据库需要数据库工具,访问搜索引擎需要搜索工具等等;可以说在智能体中所有的外部调用都是以工具的形式来体现的。
而在实际的开发过程中,工具主要是以函数和服务的形式出现;比如说定义一个访问搜索引擎的工具,只需要封装一个函数;让大模型自己去生成函数需要的参数,最后再交给python引擎执行,然后获取结果。
而在Langchain中提供了大量的封装好的工具给我们使用,如下图所示:

Langchain中集成和封装了大量的工具供大家使用,可以满足不同的业务场景,比如说有搜索,代码解释器,数据库访问等多种类型。
下面以基于pandas的智能数据分析为例,演示怎么实现一个简单的excel数据分析。
首先需要安装langchain相关的包
# 安装包 pip install --upgrade langchain_openai pip install --upgrade langchain
langchain提供的操作pandas的函数主要是
create_pandas_dataframe_agent实例化pandas Agent
agent = create_pandas_dataframe_agent(self.llm, df_list, allow_dangerous_code=True, verbose=True)
完整代码如下,当然用户也可以直接查看官方文档自己手动实现
文档地址如下:
https://python.langchain.ac.cn/docs/integrations/tools/pandas/
import os import logging import pandas as pd from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent from langchain_openai import ChatOpenAI,OpenAI # 需要换成你自己的参数 openai_api_key = "api_key" openai_api_base = "openai_url" model = "model" # Adjust logging levels for specific libraries to reduce noise logging.getLogger("openai").setLevel(logging.DEBUG) logging.getLogger("langchain").setLevel(logging.DEBUG) logging.getLogger("httpx").setLevel(logging.DEBUG) logging.getLogger("httpcore").setLevel(logging.DEBUG) logger = logging.getLogger(__name__) logging.basicConfig( level=logging.INFO, # 设置日志级别为DEBUG format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', # 定义日志格式 datefmt='%Y-%m-%d %H:%M:%S' # 定义时间格式 ) class LangChainPandas: def __init__(self, model, temperature=0.8): os.environ['OPENAI_API_KEY'] = openai_api_key os.environ['OPENAI_API_BASE'] = openai_api_base # self.llm = ChatOpenAI(model_name=model, verbose=True, temperature=temperature) self.llm = OpenAI(model_name=model, openai_api_base=openai_api_base, openai_api_key=openai_api_key, temperature=temperature) def create_agent(self, path_list): df_list = [pd.read_excel(path) for path in path_list] agent = create_pandas_dataframe_agent(self.llm, df_list, allow_dangerous_code=True, verbose=True) # agent = create_pandas_dataframe_agent( # self.llm, # df, # verbose=True, # allow_dangerous_code=True, # agent_type=AgentType.OPENAI_FUNCTIONS, # ) return agent def chat(self, query, path_list): agent = self.create_agent(path_list) result = agent.invoke(query) return result.get('output', "") if __name__ == "__main__": agent = LangChainPandas(model) # excel文件路径 path_list = ["path1", "path2"] while True: query = input("请输入您的问题: ") result = agent.chat(query, path_list) print(f"result: {result}")
(文:AI探索时代)